562 research outputs found

    Risk-Informed Interference Assessment for Shared Spectrum Bands: A Wi-Fi/LTE Coexistence Case Study

    Full text link
    Interference evaluation is crucial when deciding whether and how wireless technologies should operate. In this paper we demonstrate the benefit of risk-informed interference assessment to aid spectrum regulators in making decisions, and to readily convey engineering insight. Our contributions are: we apply, for the first time, risk assessment to a problem of inter-technology spectrum sharing, i.e. Wi-Fi/LTE in the 5 GHz unlicensed band, and we demonstrate that this method comprehensively quantifies the interference impact. We perform simulations with our newly publicly-available tool and we consider throughput degradation and fairness metrics to assess the risk for different network densities, numbers of channels, and deployment scenarios. Our results show that no regulatory intervention is needed to ensure harmonious technical Wi-Fi/LTE coexistence: for the typically large number of channels available in the 5 GHz band, the risk for Wi-Fi from LTE is negligible, rendering policy and engineering concerns largely moot. As an engineering insight, Wi-Fi coexists better with itself in dense, but better with LTE, in sparse deployments. Also, both main LTE-in-unlicensed variants coexist well with Wi-Fi in general. For LTE intra-technology inter-operator coexistence, both variants typically coexist well in the 5 GHz band, but for dense deployments, implementing listen-before-talk causes less interference

    LTE in Unlicensed Bands is neither Friend nor Foe to Wi-Fi

    Full text link
    Proponents of deploying LTE in the 5 GHz band for providing additional cellular network capacity have claimed that LTE would be a better neighbour to Wi-Fi in the unlicensed band, than Wi-Fi is to itself. On the other side of the debate, the Wi-Fi community has objected that LTE would be highly detrimental to Wi-Fi network performance. However, there is a lack of transparent and systematic engineering evidence supporting the contradicting claims of the two camps, which is essential for ascertaining whether regulatory intervention is in fact required to protect the Wi-Fi incumbent from the new LTE entrant. To this end, we present a comprehensive coexistence study of Wi-Fi and LTE-in-unlicensed, surveying a large parameter space of coexistence mechanisms and a range of representative network densities and deployment scenarios. Our results show that, typically, harmonious coexistence between Wi-Fi and LTE is ensured by the large number of 5 GHz channels. For the worst-case scenario of forced co-channel operation, LTE is sometimes a better neighbour to Wi-Fi - when effective node density is low - but sometimes worse - when density is high. We find that distributed interference coordination is only necessary to prevent a "tragedy of the commons" in regimes where interference is very likely. We also show that in practice it does not make a difference to the incumbent what kind of coexistence mechanism is added to LTE-in-unlicensed, as long as one is in place. We therefore conclude that LTE is neither friend nor foe to Wi-Fi in the unlicensed bands in general. We submit that the systematic engineering analysis exemplified by our case study is a best-practice approach for supporting evidence-based rulemaking by the regulator.Comment: accepted for publication in IEEE Acces

    The optimization and validation of the Biotyper MALDI-TOF MS database for the identification of Gram-positive anaerobic cocci

    Get PDF
    OBJECTIVES: Gram-positive anaerobic cocci (GPAC) account for 24-31% of the anaerobic bacteria isolated from human clinical specimens. At present GPAC are underrepresented in the Biotyper MALDI-TOF MS database. Profiles of new species have yet to be added. We present the optimization of the MALDI-TOF MS database for the identification of GPAC. METHODS: Main Spectral Profiles (MSPs) were created for 108 clinical GPAC isolates. Identity was confirmed using 16S rRNA gene sequencing. Species identification was considered to be reliable if the sequence similarity with its closest relative was ≄98.7%. The optimized database was validated using 140 clinical isolates. The 16S rRNA sequencing identity was compared with the MALDI-TOF MS result. RESULTS: MSPs were added from 17 species that were not yet represented in the MALDI-TOF MS database or were underrepresented (<5 MSPs). This resulted in an increase from 53.6% (75/140) to 82.1% (115/140) of GPAC isolates that could be identified at the species level using MALDI-TOF MS. An improved log score was obtained for 51.4% (72/140) of the strains. For strains with a sequence similarity <98.7% with their closest relative (n=5) or with an inconclusive sequence identity (n=4), no identification was obtained by MALDI-TOF MS or in the latter case an identity with one of its relatives. CONCLUSIONS: For some species the MSP of the type strain was not a part of the confined cluster of the corresponding clinical isolates. Also, not all species formed a homogeneous cluster. It emphasizes the necessity of adding sufficient MSPs of human clinical isolates

    Constraints on the Local Sources of Ultra High-Energy Cosmic Rays

    Full text link
    Ultra high-energy cosmic rays (UHECRs) are believed to be protons accelerated in magnetized plasma outflows of extra-Galactic sources. The acceleration of protons to ~10^{20} eV requires a source power L>10^{47} erg/s. The absence of steady sources of sufficient power within the GZK horizon of 100 Mpc, implies that UHECR sources are transient. We show that UHECR "flares" should be accompanied by strong X-ray and gamma-ray emission, and that X-ray and gamma-ray surveys constrain flares which last less than a decade to satisfy at least one of the following conditions: (i) L>10^{50} erg/s; (ii) the power carried by accelerated electrons is lower by a factor >10^2 than the power carried by magnetic fields or by >10^3 than the power in accelerated protons; or (iii) the sources exist only at low redshifts, z<<1. The implausibility of requirements (ii) and (iii) argue in favor of transient sources with L>10^{50} erg/s.Comment: 7 pages, 1 figure, submitted to JCA

    Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight

    Get PDF
    The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. For 14 of these events, this radiation was reflected from the ice. The dominant contribution to the radiation from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. This radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of 36km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations. In addition, we find that the Monte Carlo simulation of the ANITA data set is in agreement with the total number of observed events and with the properties of those events.Comment: Added more explanation of the experimental setup and textual improvement

    Exceeding the Limits of Static Cold Storage in Limb Transplantation Using Subnormothermic Machine Perfusion

    Get PDF
    Background For 50 years, static cold storage (SCS) has been the gold standard for solid organ preservation in transplantation. Although logistically convenient, this preservation method presents important constraints in terms of duration and cold ischemia-induced lesions. We aimed to develop a machine perfusion (MP) protocol for recovery of vascularized composite allografts (VCA) after static cold preservation and determine its effects in a rat limb transplantation model. Methods Partial hindlimbs were procured from Lewis rats and subjected to SCS in Histidine-Tryptophan-Ketoglutarate solution for 0, 12, 18, 24, and 48 hours. They were then either transplanted (Txp), subjected to subnormothermic machine perfusion (SNMP) for 3 hours with a modified Steen solution, or to SNMP + Txp. Perfusion parameters were assessed for blood gas and electrolytes measurement, and flow rate and arterial pressures were monitored continuously. Histology was assessed at the end of perfusion. For select SCS durations, graft survival and clinical outcomes after transplantation were compared between groups at 21 days. Results Transplantation of limbs preserved for 0, 12, 18, and 24-hour SCS resulted in similar survival rates at postoperative day 21. Grafts cold-stored for 48 hours presented delayed graft failure (p = 0.0032). SNMP of limbs after 12-hour SCS recovered the vascular resistance, potassium, and lactate levels to values similar to limbs that were not subjected to SCS. However, 18-hour SCS grafts developed significant edema during SNMP recovery. Transplantation of grafts that had undergone a mixed preservation method (12-hour SCS + SNMP + Txp) resulted in better clinical outcomes based on skin clinical scores at day 21 post-transplantation when compared to the SCS + Txp group (p = 0.01613). Conclusion To date, VCA MP is still limited to animal models and no protocols are yet developed for graft recovery. Our study suggests that ex vivo SNMP could help increase the preservation duration and limit cold ischemia-induced injury in VCA transplantation.</p

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201
    • 

    corecore